Pollutant concentrates are reduced by atmospheric mixing, which depends on such weather conditions as temperature, wind speed, and the movement of high and low pressure systems and their interaction with the local topography, for example, mountains and valleys. Normally, temperature decreases with altitude. But when a colder layer of air settles under a warm layer, producing a temperature or thermal inversion, atmospheric mixing is retarded and pollutants may accumulate near the ground. Inversions can become sustained under a stationary high-pressure system coupled with low wind speeds.
Periods of only three days of poor atmospheric mixing can lead to high concentrations of hazardous materials in high-pollution areas and, under severe conditions, can result in injury and even death. An inversion over Donora, Pennsylvania, in 1948 caused respiratory illness in over 6000 persons and led to the death of 20. Severe pollution in London took 3500 to 4000 lives in 1952 and another 700 in 1962. Release of methyl isocyanate into the air during a temperature inversion caused the disaster at Bhopal, India, in December 1984, with at least 3300 deaths and more than 20,000 illnesses. The effects of long-term exposure to low concentrations are not well defined; however, those most at risk are the very young, the elderly, smokers, workers whose jobs expose them to toxic materials, and persons with heart or lung disease. Other adverse effects of air pollution are potential injury to livestock and crops.